Evaluating the Optical Characteristics of Stereoscopic Immersive Display Systems

Author:

Penczek John1,Satterfield Steven G.2,Kelley Edward F.3,Scheitlin Timothy4,Terrill Judith E.2,Boynton Paul A.5

Affiliation:

1. University of Colorado Boulder and Engineering Laboratory National Institute of Standards and Technology 325 Broadway, MS 686.01 Boulder, CO 80305

2. Information Technology Laboratory National Institute of Standards and Technology Gaithersburg

3. KELTEK

4. Computational and Information Systems Laboratory National Center for Atmospheric Research

5. Engineering Laboratory National Institute of Standards and Technology Gaithersburg

Abstract

As large immersive displays have evolved over the years, the measurement methods used to characterize them must also advance to keep up with the changing technologies and topologies. We propose a general suite of optical measurements that can be used to determine the basic visual performance characteristics for a variety of immersive display systems. These methods utilize current display industry best practices and new research that anticipates the measurement challenges posed by the new technologies. We discuss the need for higher resolution detectors for the new generation of laser and LED (light-emitting diode) projector systems. The introduction of multi-primary displays is addressed by the implementation of new test patterns that better simulate the display performance of typical images. Methods to evaluate the unique attributes of stereoscopic displays, such as cross-talk and left eye/right eye differences, are described and interpreted. In addition, it is shown that the ambient lighting environment or display topology can have a detrimental impact on the display image quality. The application of these measurement methodologies is demonstrated by the evaluation of three display systems: two rear-projection and one front-projection display. We highlight how these measurements can identify potential display performance limitations, and offer advice on how to address some of these limitations.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3