Many Hands Make Light Work: Further Studies in Group Evolution

Author:

Tomko Nicholas1,Harvey Inman1,Virgo Nathaniel1,Philippides Andrew1

Affiliation:

1. University of Sussex

Abstract

When niching or speciation is required to perform a task that has several different component parts, standard genetic algorithms (GAs) struggle. They tend to evaluate and select all individuals on the same part of the task, which leads to genetic convergence within the population. The goal of evolutionary niching methods is to enforce diversity in the population so that this genetic convergence is avoided. One drawback with some of these niching methods is that they require a priori knowledge or assumptions about the specific fitness landscape in order to work; another is that many such methods are not set up to work on cooperative tasks where fitness is only relevant at the group level. Here we address these problems by presenting the group GA, described earlier by the authors, which is a group-based evolutionary algorithm that can lead to emergent niching. After demonstrating the group GA on an immune system matching task, we extend the previous work and present two modified versions where the number of niches does not need to be specified ahead of time. In the random-group-size GA, the number of niches is varied randomly during evolution, and in the evolved-group-size GA the number of niches is optimized by evolution. This provides a framework in which we can evolve groups of individuals to collectively perform tasks with minimal a priori knowledge of how many subtasks there are or how they should be shared out.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Reference32 articles.

1. The clonal selection theory of acquired immunity.

2. De Jong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Resolution Sensing for Sim-to-Real Complex Terrain Robots;Towards Autonomous Robotic Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3