Affiliation:
1. Universidad Nacional Autónoma de México
Abstract
Random Boolean networks (RBNs) have been a popular model of genetic regulatory networks for more than four decades. However, most RBN studies have been made with random topologies, while real regulatory networks have been found to be modular. In this work, we extend classical RBNs to define modular RBNs. Statistical experiments and analytical results show that modularity has a strong effect on the properties of RBNs. In particular, modular RBNs have more attractors, and are closer to criticality when chaotic dynamics would be expected, than classical RBNs.
Subject
Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献