Evolvable Physical Self-Replicators

Author:

Virgo Nathaniel12,Fernando Chrisantha134,Bigge Bill1,Husbands Phil1

Affiliation:

1. University of Sussex

2. Max Planck Institute for Biogeochemistry

3. Queen Mary, University of London

4. MRC National Institute for Medical Research

Abstract

Building an evolvable physical self-replicating machine is a grand challenge. The main problem is that the device must be capable of hereditary variation, that is, replicating in many configurations—configurations into which it enters unpredictably by mutation. Template replication is the solution found by nature. A scalable device must also be capable of miniaturization, and so have few or no moving and electronic parts. Here a significant step toward this goal is presented in the form of a physical template replicator made from small plastic pieces containing embedded magnets that float on an air-hockey-type table and undergo stochastic motion. Our units replicate by a process analogous to the replication of DNA, except without the involvement of enzymes. Building a physical rather than a computational model forces us to confront several problems that have analogues on the nano scale. In particular, replication must be maintained by preventing side reactions such as spontaneous ligation, cyclization, product inhibition, and elongation at staggered ends. The last of these results in ever-lengthening sequences in a process known as the elongation catastrophe. The extreme specificity of structure required by the monomers is indirect evidence that some kind of natural selection took place prior to the existence of nucleotide analogues during the origin of life.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3