Excitability Modulation of Oscillating Media in 3D-Printed Structures

Author:

King Philip H.,Abraham Chinnu H.,Zauner Klaus-Peter,de Planque Maurits R. R.1

Affiliation:

1. University of Southampton

Abstract

Excitation and oscillation are central to living systems. For excitable systems, which can be brought into oscillation by an external stimulus, the excitation threshold is a crucial parameter. This is evident for neurons, which only generate an action potential when exposed to a sufficiently high concentration of excitatory neurotransmitters, which may only be achieved when multiple presynaptic axons deliver their action potential simultaneously to the synaptic cleft. Dynamic systems composed of relatively simple chemicals are of interest because they can serve as a model for physiological processes or can be exploited to implement chemical computing. With these applications in mind, we have studied the properties of the oscillatory Belousov-Zhabotinsky (BZ) reaction in 3D-printed reaction vessels with open channels of different dimensions. It is demonstrated that the channel geometry can be used to modulate the excitability of the BZ medium, switching a continuously oscillating medium to an excitable medium. Because large networks of channel-connected reaction wells of different depth can easily be fabricated by 3D printing, local excitability modulation could be built into the structure of the reaction vessel itself, opening the way to more extensive experimentation with networks of chemical oscillators.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Belousov–Zhabotinsky reaction in liquid marbles;Journal of Physics: Materials;2019-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3