The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

Author:

Huizinga Joost12,Stanley Kenneth O.3,Clune Jeff12

Affiliation:

1. University of Wyoming, Department of Computer Science, Evolving AI Lab.

2. Uber, Uber AI Labs.

3. University of Central Florida, Department of Computer Science, EPLex.

Abstract

Many believe that an essential component for the discovery of the tremendous diversity in natural organisms was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g., offspring tend to have similar-size legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization is rarely reported in computational simulations of evolution, which deprives us of in silico examples of canalization to study and raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally, and it could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this article, we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be more modular and hierarchical than expected by chance, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3