Deterministic Response Threshold Models of Reproductive Division of Labor Are More Robust Than Probabilistic Models in Artificial Ants

Author:

Marriott Chris1,Bae Peter2,Chebib Jobran3

Affiliation:

1. University of Washington, School of Engineering and Technology. dr.chris.marriott@gmail.com

2. University of Washington, School of Engineering and Technology

3. University of Edinburgh, Institute of Evolutionary Biology

Abstract

Abstract We implement an agent-based simulation of the response threshold model of reproductive division of labor. Ants in our simulation must perform two tasks in their environment: forage and reproduce. The colony is capable of allocating ant resources to these roles using different division of labor strategies via genetic architectures and plasticity mechanisms. We find that the deterministic allocation strategy of the response threshold model is more robust than the probabilistic allocation strategy. The deterministic allocation strategy is also capable of evolving complex solutions to colony problems like niche construction and recovery from the loss of the breeding caste. In addition, plasticity mechanisms had both positive and negative influence on the emergence of reproductive division of labor. The combination of plasticity mechanisms has an additive and sometimes emergent impact.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology,Computer Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3