Self-Replication in Neural Networks

Author:

Gabor Thomas1,Illium Steffen2,Zorn Maximilian2,Lenta Cristian2,Mattausch Andy2,Belzner Lenz3,Linnhoff-Popien Claudia2

Affiliation:

1. LMU Munich. thomas.gabor@ifi.lmu.de

2. LMU Munich

3. Technische Hochschule Ingolstadt

Abstract

Abstract A key element of biological structures is self-replication. Neural networks are the prime structure used for the emergent construction of complex behavior in computers. We analyze how various network types lend themselves to self-replication. Backpropagation turns out to be the natural way to navigate the space of network weights and allows non-trivial self-replicators to arise naturally. We perform an in-depth analysis to show the self-replicators’ robustness to noise. We then introduce artificial chemistry environments consisting of several neural networks and examine their emergent behavior. In extension to this work’s previous version (Gabor et al., 2019), we provide an extensive analysis of the occurrence of fixpoint weight configurations within the weight space and an approximation of their respective attractor basins.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology,Computer Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous)

Reference32 articles.

1. Evolutionary computation: Comments on the history and current state;Bäck;IEEE Transactions on Evolutionary Computation,1997

2. Evolutionary operation: A method for increasing industrial productivity;Box;Journal of the Royal Statistical Society: Series C (Applied Statistics),1957

3. Chang, O. (2021). Autogenerative networks[Unpublished doctoral dissertation]. Columbia University.

4. Neural network quine;Chang,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructing Organism Networks from Collaborative Self-Replicators;2022 IEEE Symposium Series on Computational Intelligence (SSCI);2022-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3