The Conduciveness of CA-Rule Graphs

Author:

Barbosa Valmir C.1

Affiliation:

1. Universidade Federal do Rio de Janeiro

Abstract

Given two subsets A and B of nodes in a directed graph, the conduciveness of the graph from A to B is the ratio representing how many of the edges outgoing from nodes in A are incoming to nodes in B. When the graph's nodes stand for the possible solutions to certain problems of combinatorial optimization, choosing its edges appropriately has been shown to lead to conduciveness properties that provide useful insight into the performance of algorithms to solve those problems. Here we study the conduciveness of CA-rule graphs, that is, graphs whose node set is the set of all CA rules given a cell's number of possible states and neighborhood size. We consider several different edge sets interconnecting these nodes, both deterministic and random ones, and derive analytical expressions for the resulting graph's conduciveness toward rules having a fixed number of non-quiescent entries. We demonstrate that one of the random edge sets, characterized by allowing nodes to be sparsely interconnected across any Hamming distance between the corresponding rules, has the potential of providing reasonable conduciveness toward the desired rules. We conjecture that this may lie at the bottom of the best strategies known to date for discovering complex rules to solve specific problems, all of an evolutionary nature.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3