Open-Endedness for the Sake of Open-Endedness

Author:

Hintze Arend1

Affiliation:

1. Michigan State University, Department of Integrative Biology, Department of Computer Science and Engineering, BEACON Center for the Study of Evolution in Action.

Abstract

Natural evolution keeps inventing new complex and intricate forms and behaviors. Digital evolution and genetic algorithms fail to create the same kind of complexity, not just because we still lack the computational resources to rival nature, but because (it has been argued) we have not understood in principle how to create open-ended evolving systems. Much effort has been made to define such open-endedness so as to create forms of increasing complexity indefinitely. Here, however, a simple evolving computational system that satisfies all such requirements is presented. Doing so reveals a shortcoming in the definitions for open-ended evolution. The goal to create models that rival biological complexity remains. This work suggests that our current definitions allow for even simple models to pass as open-ended, and that our definitions of complexity and diversity are more important for the quest of open-ended evolution than the fact that something runs indefinitely.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Open-Ended Approach to Understanding Local, Emergent Conservation Laws in Biological Evolution;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Chapter 2: What Is Life?;Astrobiology;2024-03-01

3. Simple genetic operators are universal approximators of probability distributions (and other advantages of expressive encodings);Proceedings of the Genetic and Evolutionary Computation Conference;2022-07-08

4. Generation of virtual creatures under multidisciplinary biological premises;Artificial Life and Robotics;2022-06-20

5. Carle's Game: An Open-Ended Challenge in Exploratory Machine Creativity;2021 IEEE Conference on Games (CoG);2021-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3