Computational Modeling of the Regulatory Network Organizing the Wound Response in Arabidopsis thaliana

Author:

Kim Jan T.1,Camargo Anyela2,Devoto Alessandra3,Moulton Vincent1,Turner John1

Affiliation:

1. University of East Anglia

2. Aberystwyth University

3. Royal Holloway University of London

Abstract

Plants are frequently wounded by mechanical impact or by insects, and their ability to adequately respond to wounding is essential for their survival and reproductive success. The wound response is mediated by a signal transduction and regulatory network. Molecular studies in Arabidopsis have identified the COI1 gene as a central component of this network. Current models of these networks qualitatively describe the wound response, but they are not directly assessed using quantitative gene expression data. We built a model comprising the key components of the Arabidopsis wound response using the transsys framework. For comparison, we constructed a null model that is devoid of any regulatory interactions, and various alternative models by rewiring the wound response model. All models were parametrized by computational optimization to generate synthetic gene expression profiles that approximate the empirical data set. We scored the fit of the synthetic to the empirical data with various distance measures, and used the median distance after optimization to directly and quantitatively assess the wound response model and its alternatives. Discrimination of candidate models depends substantially on the measure of gene expression profile distance. Using the null model to assess quality of the distance measures for discrimination, we identify correlation of log-ratio profiles as the most suitable distance. Our wound response model fits the empirical data significantly better than the alternative models. Gradual perturbation of the wound response model results in a corresponding gradual decline in fit. The optimization approach provides insights into biologically relevant features, such as robustness. It is a step toward enabling integrative studies of multiple cross-talking pathways, and thus may help to develop our understanding how the genome informs the mapping of environmental signals to phenotypic traits.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3