Crowd-Sourced Identification of Characteristics of Collective Human Motion

Author:

Amos Martyn1,Webster Jamie2

Affiliation:

1. Northumbria University, Department of Computer and Information Sciences. martyn.amos@northumbria.ac.uk

2. Northumbria University, Department of Computer and Information Sciences

Abstract

Abstract Crowd simulations are used extensively to study the dynamics of human collectives. Such studies are underpinned by specific movement models, which encode rules and assumptions about how people navigate a space and handle interactions with others. These models often give rise to macroscopic simulated crowd behaviours that are statistically valid, but which lack the noisy microscopic behaviours that are the signature of believable real crowds. In this article, we use an existing Turing test for crowds to identify realistic features of real crowds that are generally omitted from simulation models. Our previous study using this test established that untrained individuals have difficulty in classifying movies of crowds as real or simulated, and that such people often have an idealised view of how crowds move. In this follow-up study (with new participants) we perform a second trial, which now includes a training phase (showing participants movies of real crowds). We find that classification performance significantly improves after training, confirming the existence of features that allow participants to identify real crowds. High-performing individuals are able to identify the features of real crowds that should be incorporated into future simulations if they are to be considered realistic.

Publisher

MIT Press

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology,Computer Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous)

Reference56 articles.

1. A glossary for research on human crowd dynamics;Adrian;Collective Dynamics,2019

2. Empiric design evaluation in urban planning;Aschwanden;Automation in Construction,2011

3. A model of collective behavior based purely on vision;Bastien;Science Advances,2020

4. Making noise: Emergent stochasticity in collective motion;Bode;Journal of Theoretical Biology,2010

5. Information use by humans during dynamic route choice in virtual crowd evacuations;Bode;Royal Society Open Science,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3