The Expected Number of Viable Autocatalytic Sets in Chemical Reaction Systems

Author:

Kauffman Stuart1,Steel Mike2

Affiliation:

1. University of Pennsylvania, Department of Biochemistry and Biophysics, Institute for Systems Biology. stukauffman@gmail.com

2. University of Canterbury, Biomathematics Research Centre. mike.steel@canterbury.ac.nz

Abstract

Abstract The emergence of self-sustaining autocatalytic networks in chemical reaction systems has been studied as a possible mechanism for modeling how living systems first arose. It has been known for several decades that such networks will form within systems of polymers (under cleavage and ligation reactions) under a simple process of random catalysis, and this process has since been mathematically analyzed. In this paper, we provide an exact expression for the expected number of self-sustaining autocatalytic networks that will form in a general chemical reaction system, and the expected number of these networks that will also be uninhibited (by some molecule produced by the system). Using these equations, we are able to describe the patterns of catalysis and inhibition that maximize or minimize the expected number of such networks. We apply our results to derive a general theorem concerning the trade-off between catalysis and inhibition, and to provide some insight into the extent to which the expected number of self-sustaining autocatalytic networks coincides with the probability that at least one such system is present.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Reference28 articles.

1. Coupled catabolism and anabolism in autocatalytic RNA sets;Arsène;Nucleic Acids Research,2018

2. First cycles in random directed graph processes;Bollobás;Discrete Mathematics,1989

3. Niche emergence as an autocatalytic process in the evolution of ecosystems;Cazzolla Gatti;Journal of Theoretical Biology,2018

4. Organizational invariance in (M, R)-systems;Cornish-Bowden;Chemistry and Biodiversity,2007

5. Chemical organisation theory;Dittrich;Bulletin of Mathematical Biology,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3