Affiliation:
1. Institute of Cognitive Sciences and Technologies, National Research Council.
2. Federal University of Rio Grande, Center for Computational Sciences.
Abstract
Previous evolutionary studies demonstrated how robust solutions can be obtained by evaluating agents multiple times in variable environmental conditions. Here we demonstrate how agents evolved in environments that vary across generations outperform agents evolved in environments that remain fixed. Moreover, we demonstrate that best performance is obtained when the environment varies at a moderate rate across generations, that is, when the environment does not vary every generation but every N generations. The advantage of exposing evolving agents to environments that vary across generations at a moderate rate is due, at least in part, to the fact that this condition maximizes the retention of changes that alter the behavior of the agents, which in turn facilitates the discovery of better solutions. Finally, we demonstrate that moderate environmental variations are advantageous also from an evolutionary computation perspective, that is, from the perspective of maximizing the performance that can be achieved within a limited computational budget.
Subject
Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献