The ulam Programming Language for Artificial Life

Author:

Ackley David H.1,Ackley Elena S.2

Affiliation:

1. University of New Mexico

2. Ackleyshack LLC

Abstract

Traditional digital computing demands perfectly reliable memory and processing, so programs can build structures once then use them forever—but such deterministic execution is becoming ever more costly in large-scale systems. By contrast, living systems, viewed as computations, naturally tolerate fallible hardware by repairing and rebuilding structures even while in use—and suggest ways to compute using massive amounts of unreliable, merely best-effort hardware. However, we currently know little about programming without deterministic execution, in architectures where traditional models of computation—and deterministic ALife models such as the Game of Life—need not apply. This expanded article presents ulam, a language designed to balance concurrency and programmability upon best-effort hardware, using lifelike strategies to achieve robust and scalable computations. The article reviews challenges for traditional architecture, introduces the active-media computational model for which ulam is designed, and then presents the language itself, touching on its nomenclature and surface appearance as well as some broader aspects of robust software engineering. Several ulam examples are presented; then the article concludes with a brief consideration of the couplings between a computational model and its physical implementation.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Reference22 articles.

1. Bespoke Physics for Living Technology

2. Beyond efficiency

3. Ackley, D. H. (2016). Indefinite scalability for living computation. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 4142–4146). URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11987.

4. Artificial life programming in the robust-first attractor

5. A Movable Architecture for Robust Spatial Computing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Life and Therapeutic Vaccines Against Cancers that Originate in Viruses;Global Virology III: Virology in the 21st Century;2019

2. An FPGA Implementation of a Distributed Virtual Machine;Unconventional Computation and Natural Computation;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3