Evolutionary Innovations and Where to Find Them: Routes to Open-Ended Evolution in Natural and Artificial Systems

Author:

Taylor Tim1

Affiliation:

1. Monash University, Faculty of Information Technology.

Abstract

This article presents a high-level conceptual framework to help orient the discussion and implementation of open-endedness in evolutionary systems. Drawing upon earlier work by Banzhaf et al. (2016), three different kinds of open-endedness are identified: exploratory, expansive, and transformational. These are characterized in terms of their relationship to the search space of phenotypic behaviors. A formalism is introduced to describe three key processes required for an evolutionary process: the generation of a phenotype from a genetic description, the evaluation of that phenotype, and the reproduction with variation of individuals according to their evaluation. The formalism makes explicit various influences in each of these processes that can easily be overlooked. The distinction is made between intrinsic and extrinsic implementations of these processes. A discussion then investigates how various interactions between these processes, and their modes of implementation, can lead to open-endedness. However, an important contribution of the article is the demonstration that these considerations relate to exploratory open-endedness only. Conditions for the implementation of the more interesting kinds of open-endedness—expansive and transformational—are also discussed, emphasizing factors such as multiple domains of behavior, transdomain bridges, and non-additive compositional systems. In contrast to a traditional Darwinian analysis, these factors relate not to the generic evolutionary properties of individuals and populations, but rather to the nature of the building blocks out of which individual organisms are constructed, and the laws and properties of the environment in which they exist. The article ends with suggestions of how the framework can be used to categorize and compare the open-ended evolutionary potential of different systems, how it might guide the design of systems with greater capacity for open-ended evolution, and how it might be further improved.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3