Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence

Author:

Hernández-Orozco Santiago1,Hernández-Quiroz Francisco2,Zenil Hector3

Affiliation:

1. * Department of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México 04510. Posgrado en Ciencias e Ingeniería de la Computación, Universidad Nacional Autónoma de México.

2. Department of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México 04510. Posgrado en Ciencias e Ingeniería de la Computación, Universidad Nacional Autónoma de México.

3. Algorithmic Dynamics Lab, Unit of Computational Medicine, SciLifeLab, Karolinska Institute, Karolinska Hospital L8:05, SE-171 76, Stockholm, Sweden.

Abstract

Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Open-Ended Approach to Understanding Local, Emergent Conservation Laws in Biological Evolution;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. On the roles of function and selection in evolving systems;Proceedings of the National Academy of Sciences;2023-10-16

3. Towards Large-Scale Simulations of Open-Ended Evolution in Continuous Cellular Automata;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

4. Emergence in Artificial Life;Artificial Life;2023

5. Emergence and algorithmic information dynamics of systems and observers;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3