Explaining the Neuroevolution of Fighting Creatures Through Virtual fMRI

Author:

Godin-Dubois Kevin12,Cussat-Blanc Sylvain324,Duthen Yves32

Affiliation:

1. University of Toulouse, IRIT. kevin.dubois@irit.fr

2. CNRS

3. University of Toulouse, IRIT

4. Artificial and Natural Intelligence Toulouse Institute

Abstract

Abstract While interest in artificial neural networks (ANNs) has been renewed by the ubiquitous use of deep learning to solve high-dimensional problems, we are still far from general artificial intelligence. In this article, we address the problem of emergent cognitive capabilities and, more crucially, of their detection, by relying on co-evolving creatures with mutable morphology and neural structure. The former is implemented via both static and mobile structures whose shapes are controlled by cubic splines. The latter uses ESHyperNEAT to discover not only appropriate combinations of connections and weights but also to extrapolate hidden neuron distribution. The creatures integrate low-level perceptions (touch/pain proprioceptors, retina-based vision, frequency-based hearing) to inform their actions. By discovering a functional mapping between individual neurons and specific stimuli, we extract a high-level module-based abstraction of a creature’s brain. This drastically simplifies the discovery of relationships between naturally occurring events and their neural implementation. Applying this methodology to creatures resulting from solitary and tag-team co-evolution showed remarkable dynamics such as range-finding and structured communication. Such discovery was made possible by the abstraction provided by the modular ANN which allowed groups of neurons to be viewed as functionally enclosed entities.

Publisher

MIT Press

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology,Computer Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3