Morphological Development at the Evolutionary Timescale: Robotic Developmental Evolution

Author:

Benureau Fabien C. Y.1,Tani Jun2

Affiliation:

1. Okinawa Institute of Science and Technology. fabien.benureau@oist.jp

2. Okinawa Institute of Science and Technology. jun.tani@oist.jp

Abstract

Abstract Evolution and development operate at different timescales; generations for the one, a lifetime for the other. These two processes, the basis of much of life on earth, interact in many non-trivial ways, but their temporal hierarchy—evolution overarching development—is observed for most multicellular life forms. When designing robots, however, this tenet lifts: It becomes—however natural—a design choice. We propose to inverse this temporal hierarchy and design a developmental process happening at the phylogenetic timescale. Over a classic evolutionary search aimed at finding good gaits for tentacle 2D robots, we add a developmental process over the robots’ morphologies. Within a generation, the morphology of the robots does not change. But from one generation to the next, the morphology develops. Much like we become bigger, stronger, and heavier as we age, our robots are bigger, stronger, and heavier with each passing generation. Our robots start with baby morphologies, and a few thousand generations later, end-up with adult ones. We show that this produces better and qualitatively different gaits than an evolutionary search with only adult robots, and that it prevents premature convergence by fostering exploration. In addition, we validate our method on voxel lattice 3D robots from the literature and compare it to a recent evolutionary developmental approach. Our method is conceptually simple, and it can be effective on small or large populations of robots, and intrinsic to the robot and its morphology, not the task or environment. Furthermore, by recasting the evolutionary search as a learning process, these results can be viewed in the context of developmental learning robotics.

Publisher

MIT Press

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology,Computer Science (miscellaneous),Agricultural and Biological Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3