An Autonomous In Vivo Dual Selection Protocol for Boolean Genetic Circuits

Author:

Beneš David1,Sosík Petr2,Rodríguez-Patón Alfonso3

Affiliation:

1. Silesian University in Opava

2. Silesian University in OpavaUniversidad Politécnica de Madrid

3. Universidad Politécnica de Madrid

Abstract

Success in synthetic biology depends on the efficient construction of robust genetic circuitry. However, even the direct engineering of the simplest genetic elements (switches, logic gates) is a challenge and involves intense lab work. As the complexity of biological circuits grows, it becomes more complicated and less fruitful to rely on the rational design paradigm, because it demands many time-consuming trial-and-error cycles. One of the reasons is the context-dependent behavior of small assembly parts (like BioBricks), which in a complex environment often interact in an unpredictable way. Therefore, the idea of evolutionary engineering (artificial directed in vivo evolution) based on screening and selection of randomized combinatorial genetic circuit libraries became popular. In this article we build on the so-called dual selection technique. We propose a plasmid-based framework using toxin-antitoxin pairs together with the relaxase conjugative protein, enabling an efficient autonomous in vivo evolutionary selection of simple Boolean circuits in bacteria (E. coli was chosen for demonstration). Unlike previously reported protocols, both on and off selection steps can run simultaneously in various cells in the same environment without human intervention; and good circuits not only survive the selection process but are also horizontally transferred by conjugation to the neighbor cells to accelerate the convergence rate of the selection process. Our directed evolution strategy combines a new dual selection method with fluorescence-based screening to increase the robustness of the technique against mutations. As there are more orthogonal toxin-antitoxin pairs in E. coli, the approach is likely to be scalable to more complex functions. In silico experiments based on empirical data confirm the high search and selection capability of the protocol.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3