Automatic Text Categorization in Terms of Genre and Author

Author:

Stamatatos Efstathios1,Fakotakis Nikos1,Kokkinakis George1

Affiliation:

1. University of Patras, Department of Electrical & Computer Engineering, 26500 Patras, Greece.

Abstract

The two main factors that characterize a text are its content and its style, and both can be used as a means of categorization. In this paper we present an approach to text categorization in terms of genre and author for Modern Greek. In contrast to previous stylometric approaches, we attempt to take full advantage of existing natural language processing (NLP) tools. To this end, we propose a set of style markers including analysis-level measures that represent the way in which the input text has been analyzed and capture useful stylistic information without additional cost. We present a set of small-scale but reasonable experiments in text genre detection, author identification, and author verification tasks and show that the proposed method performs better than the most popular distributional lexical measures, i.e., functions of vocabulary richness and frequencies of occurrence of the most frequent words. All the presented experiments are based on unrestricted text downloaded from the World Wide Web without any manual text preprocessing or text sampling. Various performance issues regarding the training set size and the significance of the proposed style markers are discussed. Our system can be used in any application that requires fast and easily adaptable text categorization in terms of stylistically homogeneous categories. Moreover, the procedure of defining analysis-level markers can be followed in order to extract useful stylistic information using existing text processing tools.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genre Classification of Books in Russian with Stylometric Features: A Case Study;Information;2024-06-07

2. Statistical analysis of the complete corpus of fiction in Russian and recognition of the author;Keldysh Institute Preprints;2024

3. Stylometry and forensic science: A literature review;Forensic Science International: Synergy;2024

4. Exploration of Text Classification Algorithms Based on Word Vector Techniques;2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI);2023-12-15

5. Automatic genre identification: a survey;Language Resources and Evaluation;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3