Learning Domain Ontologies from Document Warehouses and Dedicated Web Sites

Author:

Navigli Roberto1,Velardi Paola2

Affiliation:

1. Dipartimento di Informatica, Università di Roma “La Sapienza,” Via Salaria, 113-00198 Roma, Italia.

2. Università di Roma “La Sapienza” Universit'a di Roma “La Sapienza”

Abstract

We present a method and a tool, OntoLearn, aimed at the extraction of domain ontologies from Web sites, and more generally from documents shared among the members of virtual organizations. OntoLearn first extracts a domain terminology from available documents. Then, complex domain terms are semantically interpreted and arranged in a hierarchical fashion. Finally, a general-purpose ontology, WordNet, is trimmed and enriched with the detected domain concepts. The major novel aspect of this approach is semantic interpretation, that is, the association of a complex concept with a complex term. This involves finding the appropriate WordNet concept for each word of a terminological string and the appropriate conceptual relations that hold among the concept components. Semantic interpretation is based on a new word sense disambiguation algorithm, called structural semantic interconnections.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3