Improving Accuracy in Word Class Tagging through the Combination of Machine Learning Systems

Author:

Halteren Hans van1,Zavrel Jakub2,Daelemans Walter3

Affiliation:

1. TOSCA/Language & Speech, University of Nijmegen, P.O. Box 9103, 6500 HD Nijmegen, The Netherlands.

2. Textkernel BV, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

3. CNTS/Language Technology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

Abstract

We examine how differences in language models, learned by different data-driven systems performing the same NLP task, can be exploited to yield a higher accuracy than the best individual system. We do this by means of experiments involving the task of morphosyntactic word class tagging, on the basis of three different tagged corpora. Four well-known tagger generators (hidden Markov model, memory-based, transformation rules, and maximum entropy) are trained on the same corpus data. After comparison, their outputs are combined using several voting strategies and second-stage classifiers. All combination taggers outperform their best component. The reduction in error rate varies with the material in question, but can be as high as 24.3% with the LOB corpus.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Word Mining Research Based on Intelligent Algorithms;Highlights in Science, Engineering and Technology;2023-11-15

2. A hybrid part-of-speech tagger with annotated Kurdish corpus: advancements in POS tagging;Digital Scholarship in the Humanities;2023-10-05

3. Monitoring Rheological Changes Using Acoustic Emissions for Complex Formulated Fluids Manufacturing;Chemical Engineering & Technology;2023-09-05

4. 5 Syntactic Parsing of Persian: From Theory to Practice;Persian Computational Linguistics and NLP;2023-05-08

5. A survey on syntactic processing techniques;Artificial Intelligence Review;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3