Co-occurrence Retrieval: A Flexible Framework for Lexical Distributional Similarity

Author:

Weeds Julie1,Weir David2

Affiliation:

1. University of Sussex

2. University of Sussex, Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QH, UK

Abstract

Techniques that exploit knowledge of distributional similarity between words have been proposed in many areas of Natural Language Processing. For example, in language modeling, the sparse data problem can be alleviated by estimating the probabilities of unseen co-occurrences of events from the probabilities of seen co-occurrences of similar events. In other applications, distributional similarity is taken to be an approximation to semantic similarity. However, due to the wide range of potential applications and the lack of a strict definition of the concept of distributional similarity, many methods of calculating distributional similarity have been proposed or adopted. In this work, a flexible, parameterized framework for calculating distributional similarity is proposed. Within this framework, the problem of finding distributionally similar words is cast as one of co-occurrence retrieval (CR) for which precision and recall can be measured by analogy with the way they are measured in document retrieval. As will be shown, a number of popular existing measures of distributional similarity are simulated with parameter settings within the CR framework. In this article, the CR framework is then used to systematically investigate three fundamental questions concerning distributional similarity. First, is the relationship of lexical similarity necessarily symmetric, or are there advantages to be gained from considering it as an asymmetric relationship? Second, are some co-occurrences inherently more salient than others in the calculation of distributional similarity? Third, is it necessary to consider the difference in the extent to which each word occurs in each co-occurrence type? Two application-based tasks are used for evaluation: automatic thesaurus generation and pseudo-disambiguation. It is possible to achieve significantly better results on both these tasks by varying the parameters within the CR framework rather than using other existing distributional similarity measures; it will also be shown that any single unparameterized measure is unlikely to be able to do better on both tasks. This is due to an inherent asymmetry in lexical substitutability and therefore also in lexical distributional similarity.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3