Generating Indicative-Informative Summaries with SumUM

Author:

Saggion Horacio1,Lapalme Guy2

Affiliation:

1. University of Sheffield, Department of Computer Science, University of Sheffield, Sheffield, England, United Kingdom, S1 4DP.

2. Université de Montréal, Département d'Informatique et Recherche Opérationnelle, Université de Montréal, CP 6128, Succ Centre-Ville, Montréal, Québec, Canada, H3C 3J7.

Abstract

We present and evaluate SumUM, a text summarization system that takes a raw technical text as input and produces an indicative informative summary. The indicative part of the summary identifies the topics of the document, and the informative part elaborates on some of these topics according to the reader's interest. SumUM motivates the topics, describes entities, and defines concepts. It is a first step for exploring the issue of dynamic summarization. This is accomplished through a process of shallow syntactic and semantic analysis, concept identification, and text regeneration. Our method was developed through the study of a corpus of abstracts written by professional abstractors. Relying on human judgment, we have evaluated indicativeness, informativeness, and text acceptability of the automatic summaries. The results thus far indicate good performance when compared with other summarization technologies.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heart disease prediction using machine learning algorithms;MATEC Web of Conferences;2024

2. Implementation of Novel Test Rank Algorithm for Effective Text Summarization;2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2023-05-25

3. Using Semi-automatic Annotation Platform to Create Corpus for Argumentative Zoning;Linking Theory and Practice of Digital Libraries;2023

4. Hybridization of Fuzzy Theory and Nature-Inspired Optimization for Medical Report Summarization;Nature-Inspired Optimization Methodologies in Biomedical and Healthcare;2022-11-15

5. Extractive Text Summarization for Turkish: Implementation of TF-IDF and PageRank Algorithms;Lecture Notes in Networks and Systems;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3