A Modular and Hybrid Connectionist System for Speaker Identification

Author:

Bennani Younès1

Affiliation:

1. C.N.R.S., L.I.P.N. URA-1507, University of Paris-Nord, Au. J-B. Clément, 93430 Villetaneuse, France

Abstract

This paper presents and evaluates a modular/hybrid connectionist system for speaker identification. Modularity has emerged as a powerful technique for reducing the complexity of connectionist systems, and allowing a priori knowledge to be incorporated into their design. Text-independent speaker identification is an inherently complex task where the amount of training data is often limited. It thus provides an ideal domain to test the validity of the modular/hybrid connectionist approach. To achieve such identification, we develop, in this paper, an architecture based upon the cooperation of several connectionist modules, and a Hidden Markov Model module. When tested on a population of 102 speakers extracted from the DARPA-TIMIT database, perfect identification was obtained.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Training and Modular Approaches for Surgical Image Recognition;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

2. A hierarchical modular architecture for musical instrument classification;International Journal of Knowledge-based and Intelligent Engineering Systems;2005-09-13

3. A Task Decomposition Algorithm Based on the Distribution of Input Pattern Vectors for Classification Problems;IEEJ Transactions on Electronics, Information and Systems;2005

4. Capture interspeaker information with a neural network for speaker identification;IEEE Transactions on Neural Networks;2002-03

5. Automatic classification of urinary sediment images by using a hierarchical modular neural network;SPIE Proceedings;1999-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3