Dynamic Cell Structure Learns Perfectly Topology Preserving Map

Author:

Bruske Jörg1,Sommer Gerald1

Affiliation:

1. Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel, Preusserstraße 1-9, D-24105 Kiel, Germany

Abstract

Dynamic cell structures (DCS) represent a family of artificial neural architectures suited both for unsupervised and supervised learning. They belong to the recently (Martinetz 1994) introduced class of topology representing networks (TRN) that build perfectly topology preserving feature maps. DCS employ a modified Kohonen learning rule in conjunction with competitive Hebbian learning. The Kohonen type learning rule serves to adjust the synaptic weight vectors while Hebbian learning establishes a dynamic lateral connection structure between the units reflecting the topology of the feature manifold. In case of supervised learning, i.e., function approximation, each neural unit implements a radial basis function, and an additional layer of linear output units adjusts according to a delta-rule. DCS is the first RBF-based approximation scheme attempting to concurrently learn and utilize a perfectly topology preserving map for improved performance. Simulations on a selection of CMU-Benchmarks indicate that the DCS idea applied to the growing cell structure algorithm (Fritzke 1993c) leads to an efficient and elegant algorithm that can beat conventional models on similar tasks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methoden des maschinellen Lernens;Erfassen, Verarbeiten und Zuordnen multivariater Messgrößen;2023

2. Einleitung;Erfassen, Verarbeiten und Zuordnen multivariater Messgrößen;2023

3. A self-organizing incremental neural network for continual supervised learning;Expert Systems with Applications;2021-12

4. Personalization and Localization in Human-Robot Interaction: A Review of Technical Methods;Robotics;2021-11-03

5. Learning Bodily Expression of Emotion for Social Robots Through Human Interaction;IEEE Transactions on Cognitive and Developmental Systems;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3