Affiliation:
1. Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel, Preusserstraße 1-9, D-24105 Kiel, Germany
Abstract
Dynamic cell structures (DCS) represent a family of artificial neural architectures suited both for unsupervised and supervised learning. They belong to the recently (Martinetz 1994) introduced class of topology representing networks (TRN) that build perfectly topology preserving feature maps. DCS employ a modified Kohonen learning rule in conjunction with competitive Hebbian learning. The Kohonen type learning rule serves to adjust the synaptic weight vectors while Hebbian learning establishes a dynamic lateral connection structure between the units reflecting the topology of the feature manifold. In case of supervised learning, i.e., function approximation, each neural unit implements a radial basis function, and an additional layer of linear output units adjusts according to a delta-rule. DCS is the first RBF-based approximation scheme attempting to concurrently learn and utilize a perfectly topology preserving map for improved performance. Simulations on a selection of CMU-Benchmarks indicate that the DCS idea applied to the growing cell structure algorithm (Fritzke 1993c) leads to an efficient and elegant algorithm that can beat conventional models on similar tasks.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献