Convergent Algorithm for Sensory Receptive Field Development

Author:

Atick Joseph J.1,Redlich A. Norman2

Affiliation:

1. The Rockefeller University, 1230 York Avenue, New York, NY 10021 USA

2. School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 USA

Abstract

An unsupervised developmental algorithm for linear maps is derived which reduces the pixel-entropy (using the measure introduced in previous work) at every update and thus removes pairwise correlations between pixels. Since the measure of pixel-entropy has only a global minimum the algorithm is guaranteed to converge to the minimum entropy map. Such optimal maps have recently been shown to possess cognitively desirable properties and are likely to be used by the nervous system to organize sensory information. The algorithm derived here turns out to be one proposed by Goodall for pairwise decorrelation. It is biologically plausible since in a neural network implementation it requires only data available locally to a neuron. In training over ensembles of two-dimensional input signals with the same spatial power spectrum as natural scenes, networks develop output neurons with center-surround receptive fields similar to those of ganglion cells in the retina. Some technical issues pertinent to developmental algorithms of this sort, such as “symmetry fixing,” are also discussed.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3