Learning to Control Fast-Weight Memories: An Alternative to Dynamic Recurrent Networks

Author:

Schmidhuber Jürgen1

Affiliation:

1. Institut für Informatik, Technische Universität München, Arcisstr. 21, 8000 München 2, Germany

Abstract

Previous algorithms for supervised sequence learning are based on dynamic recurrent networks. This paper describes an alternative class of gradient-based systems consisting of two feedforward nets that learn to deal with temporal sequences using fast weights: The first net learns to produce context-dependent weight changes for the second net whose weights may vary very quickly. The method offers the potential for STM storage efficiency: A single weight (instead of a full-fledged unit) may be sufficient for storing temporal information. Various learning methods are derived. Two experiments with unknown time delays illustrate the approach. One experiment shows how the system can be used for adaptive temporary variable binding.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated architectural spatial composition via multi-agent deep reinforcement learning for building renovation;Automation in Construction;2024-11

2. Learning feature alignment across attribute domains for improving facial beauty prediction;Expert Systems with Applications;2024-09

3. HyperMAML: Few-shot adaptation of deep models with hypernetworks;Neurocomputing;2024-09

4. Fast Unsupervised Deep Outlier Model Selection with Hypernetworks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3