SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition

Author:

Mel Bartlett W.1

Affiliation:

1. Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 USA

Abstract

Severe architectural and timing constraints within the primate visual system support the conjecture that the early phase of object recognition in the brain is based on a feedforward feature-extraction hierarchy. To assess the plausibility of this conjecture in an engineering context, a difficult three-dimensional object recognition domain was developed to challenge a pure feedforward, receptive-field based recognition model called SEEMORE. SEEMORE is based on 102 viewpoint-invariant nonlinear filters that as a group are sensitive to contour, texture, and color cues. The visual domain consists of 100 real objects of many different types, including rigid (shovel), nonrigid (telephone cord), and statistical (maple leaf cluster) objects and photographs of complex scenes. Objects were in dividually presented in color video images under normal room lighting conditions. Based on 12 to 36 training views, SEEMORE was required to recognize unnormalized test views of objects that could vary in position, orientation in the image plane and in depth, and scale (factor of 2); for non rigid objects, recognition was also tested under gross shape deformations. Correct classification performance on a test set consisting of 600 novel object views was 97 percent (chance was 1 percent) and was comparable for the subset of 15 nonrigid objects. Performance was also measured under a variety of image degradation conditions, including partial occlusion, limited clutter, color shift, and additive noise. Generalization behavior and classification errors illustrate the emergence of several striking natural shape categories that are not explicitly encoded in the dimensions of the feature space. It is concluded that in the light of the vast hardware resources available in the ventral stream of the primate visual system relative to those exercised here, the appealingly simple feature-space conjecture remains worthy of serious consideration as a neurobiological model.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3