Coding of Time-Varying Signals in Spike Trains of Integrate-and-Fire Neurons with Random Threshold

Author:

Gabbiani Fabrizio1,Koch Christof1

Affiliation:

1. Division of Biology, 139-74 Caltech, Pasadena, CA 91125 USA

Abstract

Recently, methods of statistical estimation theory have been applied by Bialek and collaborators (1991) to reconstruct time-varying velocity signals and to investigate the processing of visual information by a directionally selective motion detector in the fly's visual system, the H1 cell. We summarize here our theoretical results obtained by studying these reconstructions starting from a simple model of H1 based on experimental data. Under additional technical assumptions, we derive a closed expression for the Fourier transform of the optimal reconstruction filter in terms of the statistics of the stimulus and the characteristics of the model neuron, such as its firing rate. It is shown that linear reconstruction filters will change in a nontrivial way if the statistics of the signal or the mean firing rate of the cell changes. Analytical expressions are then derived for the mean square error in the reconstructions and the lower bound on the rate of information transmission that was estimated experimentally by Bialek et al. (1991). For plausible values of the parameters, the model is in qualitative agreement with experimental data. We show that the rate of information transmission and mean square error represent different measures of the reconstructions: in particular, satisfactory reconstructions in terms of the mean square error can be achieved only using stimuli that are matched to the properties of the recorded cell. Finally, it is shown that at least for the class of models presented here, reconstruction methods can be understood as a generalization of the more familiar reverse-correlation technique.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silences, spikes and bursts: Three‐part knot of the neural code;The Journal of Physiology;2023-10-27

2. SNAVA—A real-time multi-FPGA multi-model spiking neural network simulation architecture;Neural Networks;2018-01

3. Detection in neuronal communications with finite channel state;Nano Communication Networks;2017-09

4. Bibliography;Mathematics for Neuroscientists;2017

5. Reverse-Correlation and Spike Train Decoding;Mathematics for Neuroscientists;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3