How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples?

Author:

Golomb David1,Hertz John2,Panzeri Stefano3,Treves Alessandro4,Richmond Barry5

Affiliation:

1. Zlotowski Center for Neuroscience and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

2. Nordita, Copenhagen, Denmark

3. Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, U.K.

4. SISSA, Biophysics and Cognitive Neuroscience, Trieste, Italy

5. Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA

Abstract

It is difficult to extract the information carried by neuronal responses about a set of stimuli because limited data samples result in biased es timates. Recently two improved procedures have been developed to calculate information from experimental results: a binning-and-correcting procedure and a neural network procedure. We have used data produced from a model of the spatiotemporal receptive fields of parvocellular and magnocellular lateral geniculate neurons to study the performance of these methods as a function of the number of trials used. Both procedures yield accurate results for one-dimensional neuronal codes. They can also be used to produce a reasonable estimate of the extra information in a three-dimensional code, in this instance, within 0.05-0.1 bit of the asymptotically calculated value—about 10% of the total transmitted information. We believe that this performance is much more accurate than previous procedures.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3