Smooth On-Line Learning Algorithms for Hidden Markov Models

Author:

Baldi Pierre1,Chauvin Yves2

Affiliation:

1. Jet Propulsion Laboratory and Division of Biology, California Institute of Technology, Pasadena, CA 91125 USA

2. Net-ID, Inc. and Department of Psychology, Stanford University, Stanford, CA 94305 USA

Abstract

A simple learning algorithm for Hidden Markov Models (HMMs) is presented together with a number of variations. Unlike other classical algorithms such as the Baum-Welch algorithm, the algorithms described are smooth and can be used on-line (after each example presentation) or in batch mode, with or without the usual Viterbi most likely path approximation. The algorithms have simple expressions that result from using a normalized-exponential representation for the HMM parameters. All the algorithms presented are proved to be exact or approximate gradient optimization algorithms with respect to likelihood, log-likelihood, or cross-entropy functions, and as such are usually convergent. These algorithms can also be casted in the more general EM (Expectation-Maximization) framework where they can be viewed as exact or approximate GEM (Generalized Expectation-Maximization) algorithms. The mathematical properties of the algorithms are derived in the appendix.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models;Journal of Computational and Graphical Statistics;2024-06-07

2. α-HMM and optimal decoding higher-order structures on sequential data;Journal of Computational Mathematics and Data Science;2022-12

3. DenseHMM: Learning Hidden Markov Models by Learning Dense Representations;Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods;2022

4. BERT for Malware Classification;Advances in Information Security;2022

5. A SLAM system based on Hidden Markov Models;Informatics and Automation;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3