Self-Organizing Map with Dynamical Node Splitting: Application to Handwritten Digit Recognition

Author:

Cho Sung-Bae1

Affiliation:

1. Department of Computer Science, Yonsei University, Seoul, 120-749 Korea

Abstract

This article presents a simple yet elegant pattern recognizer based on a dynamic node-splitting scheme for the self-organizing map that can adapt its structure as well as its weights. The scheme makes use of a structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundaries as close to the class boundaries as possible. In order to show the performance of the proposed scheme, experiments with the unconstrained handwritten digit database of Concordia University in Canada were conducted. The proposed method for an incremental formation of feature maps is 96.05 percent of the recognition rate. In view of the elegant simplicity of the approach, the reported performance is remarkable and can stand up to one of the best results reported in the literature with the same database.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3