Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network

Author:

Linsker Ralph1

Affiliation:

1. IBM Research Division, T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 USA

Abstract

A network that develops to maximize the mutual information between its output and the signal portion of its input (which is admixed with noise) is useful for extracting salient input features, and may provide a model for aspects of biological neural network function. I describe a local synaptic Learning rule that performs stochastic gradient ascent in this information-theoretic quantity, for the case in which the input-output mapping is linear and the input signal and noise are multivariate gaussian. Feedforward connection strengths are modified by a Hebbian rule during a "learning" phase in which examples of input signal plus noise are presented to the network, and by an anti-Hebbian rule during an "unlearning" phase in which examples of noise alone are presented. Each recurrent lateral connection has two values of connection strength, one for each phase; these values are updated by an anti-Hebbian rule.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3