Affiliation:
1. Physiological Laboratory, Downing Street, Cambridge CB2 3EG, England
Abstract
I describe a local synaptic learning rule that can be used to remove the effects of certain types of systematic temporal variation in the inputs to a unit. According to this rule, changes in synaptic weight result from a conjunction of short-term temporal changes in the inputs and the output. Formally, This is like the differential rule proposed by Klopf (1986) and Kosko (1986), except for a change of sign, which gives it an anti-Hebbian character. By itself this rule is insufficient. A weight conservation condition is needed to prevent the weights from collapsing to zero, and some further constraint—implemented here by a biasing term—to select particular sets of weights from the subspace of those which give minimal variation. As an example, I show that this rule will generate center-surround receptive fields that remove temporally varying linear gradients from the inputs.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献