What Is the Goal of Sensory Coding?

Author:

Field David J.1

Affiliation:

1. Department of Psychology, Cornell University, Ithaca, NY 14850 USA

Abstract

A number of recent attempts have been made to describe early sensory coding in terms of a general information processing strategy. In this paper, two strategies are contrasted. Both strategies take advantage of the redundancy in the environment to produce more effective representations. The first is described as a “compact” coding scheme. A compact code performs a transform that allows the input to be represented with a reduced number of vectors (cells) with minimal RMS error. This approach has recently become popular in the neural network literature and is related to a process called Principal Components Analysis (PCA). A number of recent papers have suggested that the optimal “compact” code for representing natural scenes will have units with receptive field profiles much like those found in the retina and primary visual cortex. However, in this paper, it is proposed that compact coding schemes are insufficient to account for the receptive field properties of cells in the mammalian visual pathway. In contrast, it is proposed that the visual system is near to optimal in representing natural scenes only if optimality is defined in terms of “sparse distributed” coding. In a sparse distributed code, all cells in the code have an equal response probability across the class of images but have a low response probability for any single image. In such a code, the dimensionality is not reduced. Rather, the redundancy of the input is transformed into the redundancy of the firing pattern of cells. It is proposed that the signature for a sparse code is found in the fourth moment of the response distribution (i.e., the kurtosis). In measurements with 55 calibrated natural scenes, the kurtosis was found to peak when the bandwidths of the visual code matched those of cells in the mammalian visual cortex. Codes resembling “wavelet transforms” are proposed to be effective because the response histograms of such codes are sparse (i.e., show high kurtosis) when presented with natural scenes. It is proposed that the structure of the image that allows sparse coding is found in the phase spectrum of the image. It is suggested that natural scenes, to a first approximation, can be considered as a sum of self-similar local functions (the inverse of a wavelet). Possible reasons for why sensory systems would evolve toward sparse coding are presented.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 840 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3