Affiliation:
1. Department of Physics and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720 USA
Abstract
In many biological systems the primary transduction of sensory stimuli occurs in a regular array of receptors. Because of this discrete sampling it is usually assumed that the organism has no knowledge of signals beyond the Nyquist frequency. In fact, higher frequency signals are expected to mask the available lower frequency information as a result of aliasing. It has been suggested that these considerations are important in understanding, for example, the design of the receptor lattice in the mammalian fovea. We show that if the organism has knowledge of the probability distribution from which the signals are drawn, outputs from a discrete receptor array can be used to estimate signals beyond the Nyquist limit. In effect, a priori knowledge can be used to de-alias the image, and the estimated signal above the Nyquist cutoff is in fact coherent with the real signal at these high frequencies. We address initially the problem of stimulus reconstruction from a noisy receptor array responding to a Gaussian stimulus ensemble. In this case, the best reconstruction strategy is a simple linear transformation. In the more interesting (and natural) case of nongaussian stimuli, optimal reconstruction requires nonlinear operations, but the higher order correlations in the stimulus ensemble can be used to improve the estimate of super-Nyquist signals.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献