Affiliation:
1. Department of Electrical Engineering, University of Delaware, Newark, DE 19716 USA
Abstract
The electronic architecture and dynamic signal processing capabilities of an artificial dendritic tree that can be used to process and classify dynamic signals is described. The electrical circuit architecture is modeled after neurons that have spatially extensive dendritic trees. The artificial dendritic tree is a hybrid VLSI circuit and is sensitive to both temporal and spatial signal characteristics. It does not use the conventional neural network concept of weights, and as such it does not use multipliers, adders, look-up-tables, microprocessors, or other complex computational units to process signals. The weights of conventional neural networks, which take the form of numerical, resistive, voltage, or current values, but do not have any spatial or temporal content, are replaced with connections whose spatial location have both a temporal and scaling significance.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献