Affiliation:
1. California Institute of Technology, Pasadena, CA 91125 USA
Abstract
Learning from hints is a generalization of learning from examples that allows for a variety of information about the unknown function to be used in the learning process. In this paper, we use the VC dimension, an established tool for analyzing learning from examples, to analyze learning from hints. In particular, we show how the VC dimension is affected by the introduction of a hint. We also derive a new quantity that defines a VC dimension for the hint itself. This quantity is used to estimate the number of examples needed to "absorb" the hint. We carry out the analysis for two types of hints, invariances and catalysts. We also describe how the same method can be applied to other types of hints.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献