Affiliation:
1. Image Engineering Laboratory, Department of Electronics, University of York, York YO1 5DD, United Kingdom
Abstract
In this paper an analysis of the statistical and the convergence properties of Kohonen's self-organizing map of any dimension is presented. Every feature in the map is considered as a sum of a number of random variables. We extend the Central Limit Theorem to a particular case, which is then applied to prove that the feature space during learning tends to multiple gaussian distributed stochastic processes, which will eventually converge in the mean-square sense to the probabilistic centers of input subsets to form a quantization mapping with a minimum mean squared distortion either globally or locally. The diminishing effect, as training progresses, of the initial states on the value of the feature map is also shown.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献