Improving Text Segmentation Using Latent Semantic Analysis: A Reanalysis of Choi, Wiemer-Hastings, and Moore (2001)

Author:

Bestgen Yves1

Affiliation:

1. Center for Text and Discourse Studies, PSOR, Place du Cardinal Mercier 10, B-1348 Louvain-la-Neuve Belgium

Abstract

Choi, Wiemer-Hastings, and Moore (2001) proposed to use Latent Semantic Analysis (LSA) to extract semantic knowledge from corpora in order to improve the accuracy of a text segmentation algorithm. By comparing the accuracy of the very same algorithm, depending on whether or not it takes into account complementary semantic knowledge, they were able to show the benefit derived from such knowledge. In their experiments, semantic knowledge was, however, acquired from a corpus containing the texts to be segmented in the test phase. If this hyper-specificity of the LSA corpus explains the largest part of the benefit, one may wonder if it is possible to use LSA to acquire generic semantic knowledge that can be used to segment new texts. The two experiments reported here show that the presence of the test materials in the LSA corpus has an important effect, but also that the generic semantic knowledge derived from large corpora clearly improves the segmentation accuracy.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and maturity of co-word thematic clusters: the field of linked data;Library Hi Tech;2023-07-20

2. The Contribution of Stemming and Semantics in Arabic Topic Segmentation;ACM Transactions on Asian and Low-Resource Language Information Processing;2018-02-05

3. Parameters Driving Effectiveness of LSA on Topic Segmentation;Computational Linguistics and Intelligent Text Processing;2018

4. Applying named entity recognition and co-reference resolution for segmenting English texts;Progress in Artificial Intelligence;2017-05-09

5. Topic segmentation using word-level semantic relatedness functions;Journal of Information Science;2016-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3