Prepositional Phrase Attachment without Oracles

Author:

Atterer Michaela12,Schütze Hinrich12

Affiliation:

1. * Institute for Natural Language Processing, University of Stuttgart, Azenbergstr. 12, 70174 Stuttgart, Germany..

2. ** Institute for Natural Language Processing, University of Stuttgart, Azenbergstr. 12, 70174 Stuttgart, Germany..

Abstract

Work on prepositional phrase (PP) attachment resolution generally assumes that there is an oracle that provides the two hypothesized structures that we want to choose between. The information that there are two possible attachment sites and the information about the lexical heads of those phrases is usually extracted from gold-standard parse trees. We show that the performance of reattachment methods is higher with such an oracle than without. Because oracles are not available in NLP applications, this indicates that the current evaluation methodology for PP attachment does not produce realistic performance numbers. We argue that PP attachment should not be evaluated in isolation, but instead as an integral component of a parsing system, without using information from the gold-standard oracle.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hebrew verb–complement dictionary;Language Resources and Evaluation;2013-12-10

2. Word sense and semantic relations in noun compounds;ACM Transactions on Speech and Language Processing;2013-07

3. A Neurocomputational Approach to Prepositional Phrase Attachment Ambiguity Resolution;Neural Computation;2012-07

4. Parsing Noun Phrases in the Penn Treebank;Computational Linguistics;2011-12

5. Prepositions in Applications: A Survey and Introduction to the Special Issue;Computational Linguistics;2009-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3