Optimum Tracking with Evolution Strategies

Author:

Arnold Dirk V.1,Beyer Hans-Georg2

Affiliation:

1. Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1W5

2. Department of Computer Science, Research Center Process and Product Engineering, Vorarlberg University of Applied Sciences, Hochschulstr. 1, A-6850 Dornbirn, Austria

Abstract

Evolutionary algorithms are frequently applied to dynamic optimization problems in which the objective varies with time. It is desirable to gain an improved understanding of the influence of different genetic operators and of the parameters of a strategy on its tracking performance. An approach that has proven useful in the past is to mathematically analyze the strategy's behavior in simple, idealized environments. The present paper investigates the performance of a multiparent evolution strategy that employs cumulative step length adaptation for an optimization task in which the target moves linearly with uniform speed. Scaling laws that quite accurately describe the behavior of the strategy and that greatly contribute to its understanding are derived. It is shown that in contrast to previously obtained results for a randomly moving target, cumulative step length adaptation fails to achieve optimal step lengths if the target moves in a linear fashion. Implications for the choice of population size parameters are discussed.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades—Part B;IEEE Transactions on Evolutionary Computation;2021-08

2. Evolution strategies for continuous optimization: A survey of the state-of-the-art;Swarm and Evolutionary Computation;2020-08

3. Bio-inspired computation: Where we stand and what's next;Swarm and Evolutionary Computation;2019-08

4. Self-adaptation in dynamic environments - a survey and open issues;International Journal of Bio-Inspired Computation;2016

5. Selforganizology;2015-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3