A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization

Author:

Thiele Lothar1,Miettinen Kaisa2,Korhonen Pekka J.3,Molina Julian4

Affiliation:

1. ETH-Zurich, Department of Information Technology and Electrical Engineering, Gloriastrasse 35, CH-8092 Zürich, Switzerland.

2. Department of Mathematical Information Technology, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland.

3. Helsinki School of Economics, Department of Business Technology, P.O. Box 1210, FI-00101 Helsinki, Finland.

4. Department of Applied Economics, University of Malaga, E-29071 Malaga, Spain.

Abstract

In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point consisting of desirable aspiration levels for objective functions. The information is used in an evolutionary algorithm to generate a new population by combining the fitness function and an achievement scalarizing function. In multi-objective optimization, achievement scalarizing functions are widely used to project a given reference point into the Pareto optimal set. In our approach, the next population is thus more concentrated in the area where more preferred alternatives are assumed to lie and the whole Pareto optimal set does not have to be generated with equal accuracy. The approach is demonstrated by numerical examples.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3