Effects of packetization on communication dynamics in brain networks

Author:

Fukushima Makoto1ORCID,Leibnitz Kenji23ORCID

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan

2. Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan

3. Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Abstract

Abstract Computational studies in network neuroscience build models of communication dynamics in the connectome that help us understand the structure-function relationships of the brain. In these models, the dynamics of cortical signal transmission in brain networks are approximated with simple propagation strategies such as random walks and shortest path routing. Furthermore, the signal transmission dynamics in brain networks can be associated with the switching architectures of engineered communication systems (e.g., message switching and packet switching). However, it has been unclear how propagation strategies and switching architectures are related in models of brain network communication. Here, we investigate the effects of the difference between packet switching and message switching (i.e., whether signals are packetized or not) on the transmission completion time of propagation strategies when simulating signal propagation in mammalian brain networks. The results show that packetization in the connectome with hubs increases the time of the random walk strategy and does not change that of the shortest path strategy, but decreases that of more plausible strategies for brain networks that balance between communication speed and information requirements. This finding suggests an advantage of packet-switched communication in the connectome and provides new insights into modeling the communication dynamics in brain networks.

Funder

Japan Society for the Promotion of Science

The Uehara Memorial Foundation

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3