The effect of using group-averaged or individualized brain parcellations when investigating connectome dysfunction in psychosis

Author:

Levi Priscila T.1ORCID,Chopra Sidhant2,Pang James C.1,Holmes Alexander1,Gajwani Mehul1,Sassenberg Tyler A.3,DeYoung Colin G.3,Fornito Alex1

Affiliation:

1. Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia

2. Department of Psychology, Yale University, New Haven, CT, USA

3. Department of Psychology, University of Minnesota, Minnesota, MN, USA

Abstract

Abstract Functional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to each brain. This approach neglects individual differences in brain functional organization and may inaccurately delineate the true borders of functional regions. These inaccuracies could inflate or underestimate group differences in case-control analyses. We investigated how individual differences in brain organization influence group comparisons of FC using psychosis as a case study, drawing on fMRI data in 121 early psychosis patients and 57 controls. We defined FC networks using either a group-based parcellation or an individually tailored variant of the same parcellation. Individualized parcellations yielded more functionally homogeneous ROIs than did group-based parcellations. At the level of individual connections, case-control FC differences were widespread, but the group-based parcellation identified approximately 7.7% more connections as dysfunctional than the individualized parcellation. When considering differences at the level of functional networks, the results from both parcellations converged. Our results suggest that a substantial fraction of dysconnectivity previously observed in psychosis may be driven by the parcellation method, rather than by a pathophysiological process related to psychosis.

Funder

Sylvia and Charles Viertel Charitable Foundation

National Health and Medical Research Council

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3