A parcellation scheme of mouse isocortex based on reversals in connectivity gradients

Author:

Guyonnet-Hencke Timothé1,Reimann Michael W.1ORCID

Affiliation:

1. Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland

Abstract

Abstract The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.

Funder

Board of the Swiss Federal Institutes of Technology

École Polytechnique Fédérale de Lausanne

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Reference40 articles.

1. Architectonic mapping of the human brain beyond Brodmann;Amunts;Neuron,2015

2. Architecture of the cerebral cortical association connectome underlying cognition;Bota;Proceedings of the National Academy of Sciences,2015

3. Density-based clustering based on hierarchical density estimates;Campello,2013

4. Diffusion maps;Coifman;Applied and Computational Harmonic Analysis,2006

5. Network structure of the mouse brain connectome with voxel resolution;Coletta;Science Advances,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3