Synchronization lag in post stroke: relation to motor function and structural connectivity

Author:

Wang Xin1,Seguin Caio2,Zalesky Andrew23,Wong Wan-wa1,Chu Winnie Chiu-wing4,Tong Raymond Kai-yu1

Affiliation:

1. Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China

2. Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia

3. Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia

4. Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China

Abstract

Stroke is characterized by delays in the resting-state hemodynamic response, resulting in synchronization lag in neural activity between brain regions. However, the structural basis of this lag remains unclear. In this study, we used resting-state functional MRI (rs-fMRI) to characterize synchronization lag profiles between homotopic regions in 15 individuals (14 males, 1 female) with brain lesions consequent to stroke as well as a group of healthy comparison individuals. We tested whether the network communication efficiency of each individual’s structural brain network (connectome) could explain interindividual and interregional variation in synchronization lag profiles. To this end, connectomes were mapped using diffusion MRI data, and communication measures were evaluated under two schemes: shortest paths and navigation. We found that interindividual variation in synchronization lags was inversely associated with communication efficiency under both schemes. Interregional variation in lag was related to navigation efficiency and navigation distance, reflecting its dependence on both distance and structural constraints. Moreover, severity of motor deficits significantly correlated with average synchronization lag in stroke. Our results provide a structural basis for the delay of information transfer between homotopic regions inferred from rs-fMRI and provide insight into the clinical significance of structural-functional relationships in stroke individuals.

Funder

Research Grants Council of the Hong Kong Special Administrative Region

CUHK Global Scholarship Programme for Research Excellence

Australian National Health and Medical Research Council (NHMRC) Senior Research Fellowship B

Melbourne Research Scholarship

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3