Increasing robustness of pairwise methods for effective connectivity in magnetic resonance imaging by using fractional moment series of BOLD signal distributions

Author:

Bielczyk Natalia Z.12ORCID,Llera Alberto13ORCID,Buitelaar Jan K.12ORCID,Glennon Jeffrey C.12,Beckmann Christian F.1234ORCID

Affiliation:

1. Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands

2. Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands

3. Radboud University Nijmegen, Nijmegen, the Netherlands

4. Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK

Abstract

Estimating causal interactions in the brain from functional magnetic resonance imaging (fMRI) data remains a challenging task. Multiple studies have demonstrated that all current approaches to determine direction of connectivity perform poorly when applied to synthetic fMRI datasets. Recent advances in this field include methods for pairwise inference, which involve creating a sparse connectome in the first step, and then using a classifier in order to determine the directionality of connection between every pair of nodes in the second step. In this work, we introduce an advance to the second step of this procedure, by building a classifier based on fractional moments of the BOLD distribution combined into cumulants. The classifier is trained on datasets generated under the dynamic causal modeling (DCM) generative model. The directionality is inferred based on statistical dependencies between the two-node time series, for example, by assigning a causal link from time series of low variance to time series of high variance. Our approach outperforms or performs as well as other methods for effective connectivity when applied to the benchmark datasets. Crucially, it is also more resilient to confounding effects such as differential noise level across different areas of the connectome.

Funder

FP7 Ideas: European Research Council

European Community’s Seventh Framework Programme

European Union’s Seventh Framework Programme

Wellcome Trust UK Strategic Award

Netherlands Organization for International Cooperation in Higher Education (NL) Netherlands Organisation for Scientific Research

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3